Images
Mfr.Part #
In Stock
Manufacturer
Description
Package
AS1506-BTDT-10 AS1506-BTDT-10 49196 ams-OSRAM USA INC. IC DGTL POT 10KOHM 256TAP 8TDFN 8-WDFN Exposed Pad
AS1507-BTDT-10 AS1507-BTDT-10 46762 ams-OSRAM USA INC. IC DGT POT 10KOHM 256TAP 16TQFN 16-WFQFN Exposed Pad
CAT5122SDGI-50-26645T3 CAT5122SDGI-50-26645T3 12359 Catalyst Semiconductor Inc. DIGITAL POT, 1 FUNC, 50000OHM, I Bulk
CAT5113ZGI-00-T3 CAT5113ZGI-00-T3 12337 Catalyst Semiconductor Inc. TAP DIGITALLY PROGRAMMABLE POTEN Bulk
X9400WV24I-2.7 X9400WV24I-2.7 30120 Xicor-Division of Intersil DIGITAL POT, 4 FUNC, 1 24-TSSOP (0.173", 4.40mm Width)
CAT5110SDGI-50-T3 CAT5110SDGI-50-T3 5378 Catalyst Semiconductor Inc. TAP MINIPOT DIGITALLY PROGRAMMAB Bulk
AS1507-BTDT-50 AS1507-BTDT-50 34299 ams-OSRAM USA INC. IC DGT POT 50KOHM 256TAP 16TQFN 16-WFQFN Exposed Pad
CAT5114VGI-10 CAT5114VGI-10 6789 Catalyst Semiconductor Inc. TAP DIGITALLY PROGRAMMABLE POTEN Bulk
CAT5129TDI-10GT3 CAT5129TDI-10GT3 16615 Catalyst Semiconductor Inc. DIGITAL POT, 1 FUNC, 10000OHM, I SOT-23-6 Thin, TSOT-23-6
CAT5114VGI-00-T3 CAT5114VGI-00-T3 35224 Catalyst Semiconductor Inc. TAP DIGITALLY PROGRAMMABLE POTEN Bulk
X9418WS24I-2.7 X9418WS24I-2.7 47283 Intersil DIGITAL POT, 2 FUNC, 1 24-SOIC (0.295", 7.50mm Width)
X9C503PZ X9C503PZ 7501 Xicor-Division of Intersil DIGITAL POT, 50000OHM 8-DIP (0.300", 7.62mm)
ISL23415UFRUZ-T7A ISL23415UFRUZ-T7A 27320 Intersil DIGIPOT, 256 PSTN, PQCC10 10-UFQFN
DS1867S-50 DS1867S-50 28167 Dallas Semiconductor DIGITAL POT, 2 FUNC, 5 16-SOIC (0.295", 7.50mm Width)
X9429WS16IZ X9429WS16IZ 22379 Intersil DIGIPOT, 64 POSITIONS 16-SOIC (0.295", 7.50mm Width)
X9511WPZ X9511WPZ 31463 Intersil X9511 - DIGITAL POTENTIOMETER 8-DIP (0.300", 7.62mm)
CAT5119SDI-50-T CAT5119SDI-50-T 50436 Catalyst Semiconductor Inc. 32-TAP MINIPOT DIGIPOT 6-TSSOP, SC-88, SOT-363

Digital Potentiometers

1. What are Digital Potentiometers?‌

A digital potentiometer (Digipot) is an integrated circuit controlled by digital signals, which is used to simulate the resistance adjustment function of a traditional mechanical potentiometer. It is a CMOS digital-analog mixed signal processing device, which can realize dynamic adjustment of resistance value through microcontroller (such as MCU) programming.

 

2. What are the ‌Core Features and Advantages of Digital Potentiometers?‌

‌Digital Control

Receive digital instructions through I²C, SPI, or up/down protocol to accurately adjust the resistance value without mechanical operation.

 

‌High Precision and Reliability

The resolution is usually 5-10 bits (32-1024 taps), 8 bits (256 levels) is the most common, and the adjustment accuracy is much higher than that of a mechanical potentiometer.

 

No physical contacts, anti-vibration, anti-interference, long life, and not affected by environmental contamination.

‌Miniaturization and Integration

Chip-level packaging, small in size, and suitable for high-density circuit design, can be directly integrated into the analog signal processing link.

 

3. What is the ‌Internal Structure and Working Principle of Digital Potentiometers?‌

1) ‌Resistor Ladder Architecture‌:

The internal resistor array (Resistor Ladder) is used, and each tap is connected to the output end through a switch. The digital signal controls the tap position and changes the resistance ratio between the A end, the B end, and the wiper.

 

2) ‌Working Mode‌:

‌Potentiometer mode‌ (three terminals: A, B, W): Used as a voltage divider to adjust the output voltage.

 

‌Rheostat mode‌ (two terminals: A/W or B/W): Used as an adjustable resistor.

 

4. What are Digital Potentiometers Used for?‌

‌Signal Conditioning‌: Fine-tuning amplifier gain (such as instrument amplifier), offset calibration, and small signal audio balance.

‌Power Management‌: Dynamically adjust the output voltage of the linear regulated power supply.

‌Dynamic Control Circuit‌: Adjust LED dimming current, oscillator frequency/amplitude, filter bandwidth, and differential amplifier gain.

‌Embedded System‌: Replace mechanical potentiometers to realize software control of analog circuits by MCU (such as volume adjustment of smart devices).

 

5. What are the ‌Key Technical Parameters and Limitations of Digital Potentiometers?‌‌

‌Tap Resolution: 5 bits (32 levels) to 10 bits (1024 levels), 8 bits (256 levels) are the most common

‌Operating Voltage‌‌: Usually compatible with 3.3V/5V systems (such as MCP42100 supports 2.7V–5.5V)

‌Current Limit‌‌: Most models ≤1mA (such as MCP4XXXX series), pay attention to load design

‌Voltage Range Limit‌‌: The input voltage must be within the digital power supply range, and additional circuits are required when it exceeds the range

 

6. ‌Comparison with Traditional Mechanical Potentiometers‌‌

‌Features

‌Digital Potentiometer

‌Mechanical Potentiometer

‌Control Method

Digital signal (MCU/logic circuit)

Manual rotation/sliding

‌Life and Reliability

No mechanical wear, long life

Contacts are prone to oxidation and wear

‌Accuracy

High precision, preset values can be stored

Depends on manual adjustment, easy to introduce errors

‌Environmental Adaptability

Anti-vibration, humidity, temperature changes

Sensitive to physical environment

‌Integration

Easy to integrate with digital systems, support bus control

Independent physical operation required

Power Handling

Only suitable for low-power scenarios (usually ≤1W)

Can support higher power

 

7. Design Considerations for Digital Potentiometers

Current and Voltage Limits: Strictly follow the device specifications to avoid overload damage.

Cascade Expansion: Some models (such as MCP42100) support multi-module cascading to increase control channels.

Dynamic Response: The tap switching time can reach microseconds, which is suitable for real-time adjustment scenarios.

 

Digital potentiometers have significantly improved the flexibility and automation level of circuit control through the design concept of “placing analog devices on the bus”, and have become an ideal solution to replace mechanical potentiometers in modern electronic systems.